Proximal $\mathbf{V}_{\mathbf{4}}$-Magic Labeling

S.Kavitha

Research Scholar (Full Time),Register Number 19212212092007
Department of Mathematics,
St.Mary's College (Autonomous), Thoothukudi, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012,Tamilnadu, India.

kavithavikunth@gmail.com

V.L.Stella Arputha Mary

Assistant Professor,
Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi drstellaarputha@gmail.com

Abstract

For a non-trivial Abelian group V_{4} under multiplication a graph G is said to be $V_{4}{ }^{-}$ magic graph if there exist a labeling g of the edges of G with non-zero elements of V_{4} such that the vertex labeling g^{*} defined as $g^{*}(v)={ }^{\Pi} g(u v)$ taken over all edges $u v$ incident at v is a constant.

$$
\text { If } g^{*}(v)={ }_{u}^{\Pi} g(u v) \text { is constant for all vertices except for one or }
$$

atmost two vertices $v \in V$, then the labeling is called Proximal V_{4}-magic
labeling. The graph which admits Proximal V_{4}-magic labeling is calledas
Proximal V_{4}-magic graph.
In this paper Proximal V_{4}-magic labeling for some special graphsand cycle related graphs are investigated.

Keyword: $\quad U(m, n), \operatorname{PF}(m, n)$, Kite graph $(\mathrm{n}, \mathrm{t}),\left[P_{m} ; C_{n}\right],\left[P_{m}, C^{(t)}\right]$, n $D B_{n}, P_{n}, P_{n} \odot K_{1}, P_{n} \odot m K_{1}, K_{1, n} B_{n, n} P T(n, m)$

AMS subject classification (2010): 05C78

1 Introduction

Laid Foundation by Euler in the 18th century. Graph Theory grew wider by Sedlack, Kong, Lee and Sun. Sedlack introduced Magic labeling, Bloom and Golomb connected graph labeling to a wide range of applicationsuch as coding theory, communication design, Radar, circuit design, Astronomy, Network and X-ray crystallography.

For a non-trivial Abelian group V_{4} under multiplication a graph G
is said to be V_{4}-magic graph if there exist a labeling g of the edges of G with non-zero elements of V_{4} such that the vertex labeling g^{*} defined as $g^{*}(v)={ }^{\Pi} g(u v)$ taken over all edges $u v$ incident at v is a constant.

$$
\text { If } g^{*}(v)=\prod_{u} g(u v) \text { is constant for all vertices except for one or }
$$

atmost two vertices $v \in V$, then the labeling is called Proximal V_{4}-magic
labeling. The graph which admits Proximal V_{4}-magic labeling is calledas
Proximal V_{4}-magic graph.
In this paper Proximal V_{4}-magic labeling for some special graphsand cycle related graphs are investigated.

2 Preliminaries

Definition 2.1 (Bistar)
$B_{n, n}$ is the graph obtained by joining the central (apex) vertex of twocopies of $K_{1, n}$ by an edge.

Definition 2.2 (Palm Tree)

A path of length t atached to the centre vertex of a star graph $K_{1, n}$ iscalled

Palm Tree graph. It is denoted by $\operatorname{PT}(n, t)$. It has $(n+t)$ edges.

Definition 2.3 (Umbrella)

The graph obtained by attaching one end vertex of a path P_{m} to the centre vertex of the Wheel or Cone W_{n} is called Umbrella graph and it denoted by $U(n$, $m), n \geq 3, m \geq 2$.

Definition 2.4 (Pedestal Fan Graph)

Let F_{n} be a fan and P_{m} be a path. The graph obtained by attaching the path to the center vertex u of the fan by an edge is called Pedestal Fan and denoted by PF (n, m).

3 Main Results

Proximal V_{4}-magic labeling for Special Graphs

Definition 3.1 For a non-trivial Abelian group V_{4} under multiplicationa graph G is said to be V_{4}-magic graph if there exist a labeling g of the edges of G with non-zero elements of V_{4} such that the vertex labeling g^{*} defined as $g *(v)=\Pi$ $g(u v)$ taken over all edges $u v$ incident at v is a u
constant.

$$
\text { If } g^{*}(v)=\prod_{u}^{\Pi} g(u v) \text { is constant for all vertices except for one or }
$$

atmost two vertices $v \in V$, then the labeling is called Proximal V_{4}-magiclabeling.

The graph which admits Proximal V_{4}-magic labeling is called
as Proximal V_{4}-magic graph.

Theorem 3.2

For $n \geq 3, P_{n}$ becomes a Proximal V_{4}-magic graph

Proof.

Let G be a path graph $P_{n}, n \geq 3$.
Let $V(G)=\left\{v_{p} / 1 \leq p \leq n\right\}$ be the vertex set of G
Let $E(G)=\left\{v_{p} v_{p+1} / 1 \leq p \leq n-1\right\}$ be the edge set of G

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(v_{p} v_{p+1}\right)=-1 ; 1 \leq p \leq n-1$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(v_{1}\right)=-1 g^{*}\left(v_{n}\right)=-1$
$g^{*}\left(v_{p}\right)=1 ; 2 \leq p \leq n-1$
Except the first vertex and last vertex, every other vertex get the constant

1. Hence P_{n} becomes a Proximal V_{4}-magic graph for $n \geq 3$

Illustration 3.3

Figure 1: P_{9}

Theorem 3.4
$P_{n} \odot K_{1}$, the comb graph is Proximal V_{4} for $n \geq 2$.

Proof.

Let G be a comb graph $P_{n} \odot K_{1}, n \geq 2$

Let $V(G)=\left\{v_{p} / 1 \leq p \leq n\right\} \cup\left\{u_{p} / 1 \leq p \leq n\right\}$ be the vertex set of G Let $E(G)=$ $\left\{v_{p} v_{p+1} / 1 \leq p \leq n-1\right\} \cup\left\{v_{p} u_{p} / 1 \leq p \leq n\right\}$ be the edge setof G

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(v_{p} v_{p+1}\right)=-1 ; 1 \leq p \leq n-1$
$g\left(v_{p} u_{p}\right)=-1 ; 1 \leq p \leq n$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(v_{1}\right)=1$
$g *\left(v_{n}\right)=1$
$g^{*}\left(v_{p}\right)=-1 ; 2 \leq p \leq n-1$
$g^{*}\left(u_{p}\right)=-1 ; 1 \leq p \leq n$
All the vertex except v_{1} an v_{n} get the constant -1 .
Thus the comb graph satisfies the Proximal V_{4}-magic graph labeling andbecomes
a Proximal V_{4}-magic graph.

Illustration 3.5

Figure 2: $P_{5} \odot K_{1}$

Theorem 3.6
$P_{n} \odot m K_{1}$, the comb graph is Proximal V_{4}-magic graph for $m \in \mathrm{~N}$.

Proof.

Let G be a $P_{n} \odot m K_{1} m \in N$

Let $V(G)=\left\{v_{p} / 1 \leq p \leq n\right\} \cup\left\{u_{p q} / 1 \leq p \leq n, 1 \leq q \leq m\right\}$ be the vertexset of G Let $E(G)=\left\{v_{p} v_{p+1} / 1 \leq p \leq n\right\} \cup\left\{v_{p} u_{p q} / 1 \leq p \leq n, 1 \leq q \leq m\right\}$ be theedge set of G

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(v_{p} v_{p+1}\right)=-1 ; 1 \leq p \leq n-1$
$g\left(v_{p} u_{p q}\right)=-1 ; 1 \leq p \leq n, 1 \leq q \leq m$ which induces $g^{*}: V(G) \rightarrow V_{4}$ such thatwhen m is odd,
$g^{*}\left(v_{p}\right)=1$ for $p=1, n g^{*}\left(v_{p}\right)=-1,2 \leq p \leq n-1$
$g^{*}\left(u_{p q}\right)=-1 ; 1 \leq p \leq n, 1 \leq q \leq m$
when m is even,
$g^{*}\left(v_{p}\right)=-1$ for $p=1, n g^{*}\left(v_{p}\right)=1,2 \leq p \leq n-1$
$g^{*}\left(u_{p q}\right)=-1 ; 1 \leq p \leq n, 1 \leq q \leq m$

Thus in both cases except v_{1} an v_{n} all other vertices get the same constantnumber either 1 or -1 .

Thus G satisfies the Proximal V_{4}-magic graph labeling and $P_{n} \odot m K_{1}$ becomes a Proximal V_{4}-magic graph.

Illustration 3.7

Figure 3: $P_{5} \odot 5 K_{1}$

Theorem 3.8
$K_{1, n}$ is Proximal V_{4} if and only if $n \neq 4 m+1, m \in \mathrm{~N}$.

Proof.

Let $n \neq 4 m+1, m \in \mathrm{~N}$.
Let G be the star graph $K_{1, n}$
Let $V(G)=\left\{u, v_{p} / 1 \leq p \leq n\right\}$ be the vertex set of GLet $E(G)=\left\{u v_{p} / 1 \leq p \leq n\right\}$ be the edge set of G

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are $g\left(u v_{p}\right)=i ; 1 \leq p \leq n$ and $n \neq 4 m+1, m \in$ Nwhich induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(v_{p}\right)=i, 1 \leq p \leq n$ and $g^{*}(u)$ gets different values other than all othervertices.

Hence G becomes a Proximal V_{4}-magic graph by satisfying the Proximal
V_{4}-magic graph labeling.

Conversely, let $K_{1, n}$ be a proximal V_{4}-magic graph.Let $n=4 m+1, m \in \mathrm{~N}$.
By giving suitable edge labels to $K_{1, n}$, all the vertices $\left\{u, v_{p} / 1 \leq p \leq n\right\}$
get the same constant.
$K_{1, n}$ becomes a V_{4}-magic graph, which is a contradiction to our assumption
that $K_{1, n}$ is a proximal V_{4}-magic graph. Hence $n \quad \neq 4 m+1, m \in N$.
Thus $K_{1, n}$ is Proximal V_{4} if and only if $n \quad \nexists 4 m+1, m \in \mathrm{~N}$.

Illustration $3.9 K_{1,5}(\mathrm{ie}) K_{1,4(1)+1}$ is not proximal V_{4}.

Figure 4:
$K_{1,10}$ is proximal V_{4}-magic graph.

Figure 5: $K_{1,10}$
Theorem 3.10
Bistar graph $B_{n, n}$ is a Proximal V_{4}-magic graph for any n.

Proof.

Let G be a Bistar graph $B_{n, n} n \in N$
Let $V(G)=\left\{u, u_{p}, v, v_{p} / 1 \leq p \leq n\right\}$ be the vertex set of GLet $E(G)=\left\{u v, u u_{p}\right.$, $\left.v v_{p} / 1 \leq p \leq n\right\}$ be the edge set of G

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g(u v)=i$
$g\left(u u_{p}\right)=-1 ; 1 \leq p \leq n g\left(v v_{p}\right)=-1 ; 1 \leq p \leq n$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
all the vertices except u, v get the same vertex labeling.

Thus G satisfies the Proximal V_{4}-magic graph labeling. Hence Bistargraph $B_{n, n}$ is a Proximal V_{4}-magic graph for all n.

Illustration 3.11

Figure 6: $B_{9,9}$

Theorem 3.12

Palm Tree $P T(n, m)$ is a Proximal V_{4}-magic graph for any $n, m \in \mathrm{~N}$.

Proof.

Let G be $P T(n, m), n, m \in \mathrm{~N}$

Let $V(G)=\left\{v_{p}, v, u_{p} / 1 \leq p \leq n, 1 \leq q \leq m\right\}$ be the vertex set of G
Let $E(G)=\left\{v v_{p}, v u_{1}, u_{q} u_{q+1} / 1 \leq p \leq n, 2 \leq q \leq m-1\right\}$ be the edge setof G.

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(v v_{p}\right)=-1 ; 1 \leq p \leq n g\left(v u_{1}\right)=i$
$g\left(u_{q} u_{q+1}\right)=i ; 2 \leq q \leq m-1$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
when all the vertices except v and u_{m} get the same vertex labeling. Thus G satisfies the Proximal V_{4}-magic graph labeling. Hence Palm Tree $P T(n, m)$ is a Proximal V_{4}-magic graph for all $n, m \in \mathrm{~N}$.

Illustration 3.13

Figure 7: $P T(4,4)$

Figure 8: $P T(7,9)$

Proximal V_{4}-Magic Labeling for Cycle Related Graphs

Theorem 3.14

Umbrella graph $U(m, n)$ is a Proximal V_{4}-magic graph.

Proof.

Let G be an Umbrella graph $U(m, n)$, for any $m, n \in N$
Let $V(G)=\left\{u_{p}, v_{q} / 1 \leq p \leq m, 1 \leq q \leq n\right\}$ be the vertex set of G
Let $E(G)=\left\{u_{p} u_{p+1}, v_{1} u_{p} / 1 \leq p \leq m-1\right\} \cup\left\{v_{q} v_{q+1} / 1 \leq q \leq n-1\right\}$ bethe edge set of G .

$$
\left[u_{m+1}=u_{1}\right]
$$

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(v_{p} v_{p+1}\right)=-1 ; 1 \leq p \leq m-1 g\left(u_{p} u_{p+1}\right)=i ; 1 \leq p \leq m-1 g\left(v_{1} u_{p}\right)=-1 ; 1 \leq p \leq$ m
$g\left(v_{q} v_{q+1}\right)=-1 ; 1 \leq q \leq n$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that the vertices v_{1} and v_{n} get the different vertex labels, when m is even. And only v_{n} get different label when m is odd and all the other vertices gets the same vertex labels.

Hence $U(m, n)$ becomes a Proximal V_{4}-magic graph.

Illustration $3.15 \cup(6,5)$

Figure 9: $U(6,5)$

Figure 10: $U(11,6)$

Remark 3.16

Umbrella graph $U(m, n)$ becomes a Hefty V_{4}-magic graph, when m is odd.

Theorem 3.17

Pedestal Fan graph $P F(m, n)$ is a Proximal V_{4}-magic graph for $m \geq$
$3, n \geq 2$.

Proof.

Let G be Pedestal Fan graph $P F(m, n), m \geq 3, n \geq 2$.

Let $V(G)=\left\{u, u_{p}, v_{q} / 1 \leq p \leq m, 1 \leq q \leq n\right\}$ be the vertex set of G
Let $E(G)=\left\{u u_{p} / 1 \leq p \leq m\right\} \cup\left\{u_{p} u_{p+1} / 1 \leq p \leq m-1\right\} \cup\left\{u v_{1}\right\} \cup$
$\left\{v_{q} v_{q+1} / 1 \leq q \leq n\right\}$ be the edge set of G
Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$\left.g\left(u u_{1}\right)=g\left(u u_{m}\right)\right)=-i g\left(u u_{p}\right)=-1 ; 2 \leq p \leq m-1 g\left(u_{p} u_{p+1}\right)=i ; 1 \leq p \leq m-1$
$g\left(v_{q} v_{q+1}\right)=-1 ; 1 \leq q \leq n-1 g\left(u v_{1}\right)=-1$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that

When m is odd, only one vertex v_{m} get the different label and all othervertices
have the same labels.

When m is even, two vertices u, v_{m} get different vertex label and all the
other vertices get the constant vertex label.
Thus Pedestal Fan PF (m, n) satisfies Proximal V_{4}-magic graph labelingand becomes a Proximal V_{4}-magic graph for $m \geq 3, n \geq 2$.

Illustration 3.18

Figure 11: $\operatorname{PF}(5,6)$

Figure 12: $\operatorname{PF}(6,5)$

Kite graph (n, t) is a Proximal V_{4}-magic graph for $n \geq 3$ and $t \geq 1$.

Proof.

Let G be Kite graph $(n, t), n \geq 3$ and $t \geq 1$. Let $V(G)=\left\{v_{p} / 1 \leq p \leq\right.$
$n\} \cup\left\{u_{q} / 1 \leq q \leq t\right\}$ be the vertex set of G
Let $E(G)=\left\{v_{p} v_{p+1} / 1 \leq p \leq n\right\} \cup\left\{v_{1} u_{1}\right\} \cup\left\{u_{q} u_{q+1} / 1 \leq q \leq t-1\right\}$ bethe edge set of G

$$
\left[v_{n+1}=v_{1}\right]
$$

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(v v_{p}\right)=-1 ; 1 \leq p \leq n g\left(v_{1} u_{1}\right)=-1$
$g\left(u_{q} u_{q+1}\right)=-1 ; 1 \leq q \leq t$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
except v_{1} and u_{t}, all the other vertices get the same constant 1 .

Thus Kite graph (n, t) becomes Proximal graph by satisfying the conditionof

Proximal V_{4}-magic graph labeling.

Illustration $3.20(7,5)$

Figure 13:
Illustration $3.21(10,6)$

Figure 14:

Observation 3.22

Whether G is a Hefty V_{4}-magic graph or V_{4}-magic graph, $G \odot P_{n}$ is aProximal V_{4}-magic graph.
[$P_{m} ; C_{n}$] graph is a Proximal V_{4}-magic graph for any $m \geq 2, n \geq 3$.

Proof.

Let G be a $\left[P_{m} ; C_{n}\right]$ graph, $m \geq 2, n \geq 3$ Let $V(G)=\left\{v_{p q} / 1 \leq p \leq\right.$ $m, 1 \leq q \leq n\}$ be the vertex set of G

Let $E(G)=\left\{v_{p q} v_{p+1, q} / 1 \leq p \leq m-1, q=1\right\} \cup\left\{v_{p q} v_{p q+1} / 1 \leq p \leq m, 1 \leq\right.$ $q \leq n\}$ be the edge set of G.

$$
\left[v_{p n+1}=v_{p 1}\right]
$$

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(v_{p q} v_{p+1, q}\right)=-1 ; 1 \leq p \leq m-1$ and $q=1$
$g\left(v_{p q} v_{p q+1}\right)=i, 1 \leq p \leq m$ and $1 \leq q \leq n$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that except v_{11} and $v_{m 1}$ all the othervertices get the same constant -1 .

Thus $\left[P_{m} ; C_{n}\right.$] graph becomes a Proximal V_{4}-magic graph by satisfyingthe condition of Proximal V_{4}-magic graph labeling.

Illustration $3.24\left[P_{3} ; C_{4}\right]$

Figure 15: $\left[P_{3} ; C_{4}\right]$
Illustration $3.25\left[P_{4} ; C_{5}\right]$

Figure 16: $\left[P_{4} ; C_{5}\right]$

Theorem 3.26
$\left[P_{n} ; C_{m}^{(t)}\right]$ is a Proximal V_{4}-magic graph for $n \geq 2, m \geq 3$ and $t \geq 1$.

Proof.

Let G be a $\left[P_{n} ; C^{(t)}\right]$ graph $n \geq 2, m \geq 3$ and $t \geq 1$.

Let n be odd or even

International Journal of Education and Science Research Review

Volume-9, Issue-3 May-June- 2022
Case 1 Let both m and t be odd

Let $V(G)=\left\{u_{p} / 1 \leq p \leq n\right\} \cup\left\{v^{(t)} / 1 \leq p p \notin n, 1 \leq q \leq m-1\right.$ and $\left.t \geq 1\right\}$
be the vertex set of G
Let $E(G)=\{\underset{p}{u} \underset{p+1}{u} / 1 \leq p \leq n-1\} \cup \underset{p q}{\left\{v_{p q+1}^{(t)},\right.} v_{p q+1}^{(t)} / 1 \leq p \leq n ; 1 \leq q \leq$
$m-2 ; t \geq 1\} \cup\left\{u_{p} v^{(t)} / \underset{p 1}{ } \leq p \leq n, t \geq 1\right\} \cup\left\{u_{p} v^{(t)} \underset{p(m-1)}{/ 1} \leq p \leq n, t \geq 1\right\}$
be the edge set of G. Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such thatthe edge labels are
$g\left(u_{p} u_{p+1}\right)=-1 ; 1 \leq p \leq n-1$
$g\left(u_{p} v^{(t)}\right)=i, 1_{p} \leq p \leq n, t \geq 1$
${ }_{p(m)}^{(t)} g(y) v=i, 1 \leq p \leq n, t \geq 1$
$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=-i, 1 \leq p \leq n, 1 \leq q \leq m-2, q$ is odd, $t \geq 1$
$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=-i, 1 \leq p \leq n, 1 \leq q \leq m-2, q$ is even, $t \geq 1$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(u_{1}\right)=1$ and $g^{*}\left(u_{n}\right)=1$ And all the other vertices

$$
g^{*}\left(u_{p}\right)=-1,2 \leq p \leq n-1 \text { Hence G becomes a Proximal }
$$

V_{4}-magic graph.
Case 2 Let both m and t be even.

Let $V(G)=\left\{u_{p} / 1 \leq p \leq n\right\} \cup\left\{v^{(t)} / 1 \leq p p 屯 n, 1 \leq q \leq m-1\right.$ and $\left.t \geq 1\right\}$
be the vertex set of G
Let $E(G)=\left\{u_{p p+1}^{u} / 1 \leq p \leq n-1\right\} \cup \underset{p q}{\left\{v_{p q+1}^{(t)}\right.} v^{(t)} / 1 \leq p \leq n ; 1 \leq q \leq$

$$
m-2 ; t \geq 1\} \cup\left\{u_{p} v^{(t)} / \underset{p 1}{1} \leq p \leq n, t \geq 1\right\} \cup\left\{u_{p} v^{(t)} \quad \underset{p(m-1)}{/ 1} \leq p \leq n, t \geq 1\right\}
$$

be the edge set of G.
Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(u_{p} u_{p+1}\right)=-1 ; 1 \leq p \leq n-1$
$g\left(u_{p} v^{(t)}\right)=i, 1_{p \leq 1} p \leq n, t \geq 1$

$$
{ }_{p(m)}^{(t)} g(\mu) \downarrow=-i, 1 \leq p \leq n, t \geq 1
$$

$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=-i, 1 \leq p \leq n, 1 \leq q \leq m-2, q$ is odd, $t \geq 1$
$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=i, 1 \leq p \leq n, 1 \leq q \leq m-2, q$ is even, $t \geq 1$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(u_{1}\right)=-1$ and $g^{*}\left(u_{n}\right)=-1$ And all the other vertices

$$
g^{*}\left(u_{p}\right)=1,2 \leq p \leq n-1 \text { Hence } G \text { becomes a Proximal } V_{4}-
$$

magic graph.
Case 3 Let m be odd and t be even.
Let $V(G)=\left\{u_{p} / 1 \leq p \leq n\right\} \cup\left\{v^{(t)} / 1 \leq p_{p} \notin n, 1 \leq q \leq m-1\right.$ and $\left.t \geq 1\right\}$
be the vertex set of G
Let $E(G)=\{\underset{p}{u} \underset{p+1}{u} 11 \leq p \leq n-1\} \cup\left\{\underset{p q}{v_{p q+1}^{(t)} v^{(t)}} / 1 \leq p \leq n ; 1 \leq q \leq\right.$
$m-2 ; t \geq 1\} \cup\left\{u_{p} \nu^{(t)} / \underset{p 1}{1 \leq p \leq n, t \geq 1\} \cup\left\{u_{p} \nu^{(t)} \quad \underset{p(m-1)}{/ 1} \leq p \leq n, t \geq 1\right\}}\right.$
be the edge set of G.
Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(u_{p} u_{p+1}\right)=-1 ; 1 \leq p \leq n-1$
$g\left(u_{p} v^{(t)}\right)=i, 1_{p \leq} p \leq n, t \geq 1$
${ }_{p(m)}^{(t)} g\left(y_{p}\right) \vee=i, 1 \leq p \leq n, t \geq 1$
$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=-i, 1 \leq p \leq n, 2 \leq q \leq m-2, q$ is odd, $t \geq 1$
$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=i, 1 \leq p \leq n, 2 \leq q \leq m-2, q$ is even, $t \geq 1$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(u_{1}\right)=-1$ and $g^{*}\left(u_{n}\right)=-1$ And all the other vertices

$$
g^{*}\left(u_{p}\right)=1,2 \leq p \leq n-1 \text { Hence G becomes a Proximal } V_{4^{-}}
$$

magic graph.

Case 4 Let m be even and t be odd

Let $V(G)=\left\{u_{p} / 1 \leq p \leq n\right\} \cup\left\{v^{(t)} / 1 \leq p_{p 屯} n, 1 \leq q \leq m-1\right.$ and $\left.t \geq 1\right\}$
be the vertex set of G
Let $E(G)=\left\{\begin{array}{c}\left.u \underset{p}{u} u_{p+1} / 1 \leq p \leq n-1\right\} \\ \cup \underset{p q}{\left\{v_{p q+1}^{(t)}\right.} v^{(t)} / 1 \leq p \leq n, 1 \leq q \leq\end{array}\right.$
$m-2, t \geq 1\} \cup\left\{u_{p} \nu^{(t)} / \underset{p 1}{ } \leq p \leq n, t \geq 1\right\} \cup\left\{u_{p} \nu^{(t)} \quad \underset{p(m-1)}{/ 1} \leq p \leq n, t \geq 1\right\}$
be the edge set of G.

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(u_{p} u_{p+1}\right)=-1 ; 1 \leq p \leq n-1$
$g\left(u_{p} v^{(t)}\right)=i, 1_{p \leq} p \leq n, t \geq 1$
${ }_{p(m)}^{(t)} g(y) \downarrow=-i, 1 \leq p \leq n, t \geq 1$
$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=-i, 1 \leq p \leq n, 2 \leq q \leq m-2, q$ is odd, $t \geq 1$
$g\left(v_{p q}^{(t)} v_{p q+1}^{(t)}\right)=i, 1 \leq p \leq n, 2 \leq q \leq m-2, q$ is even, $t \geq 1$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(u_{1}\right)=-1$ and $g^{*}\left(u_{n}\right)=-1$ And all the other vertices

$$
g^{*}\left(u_{p}\right)=1,2 \leq p \leq n-1
$$

Hence G becomes a Proximal V_{4}-magic graph.
Thus from all the four cases $\left[P_{n} ; C_{m}^{(t)}\right.$] is a Proximal V_{4}-magic graph is proved

Illustration 3.27

Figure 18: $\left[P_{\Phi} ; C^{(2)}\right]$

Figure 19: $\left[P_{\S} ;{ }^{(3)}\right]$

Remark 3.28

If all the edges of $\left[P_{n} ; C^{(t)}\right]$ are labelled with -1 , then again $\left[P_{n} ; C^{(t)}\right] \quad m$ becomes a Proximal V_{4}-magic graph.

Theorem 3.29

Dumbell graph $D B_{n}$ is a Proximal V_{4}-magic graph for $n \geq 3$.

Proof.

Let G be a Dumbell $D B_{n} n \geq 3$
Let $V(G)=\left\{u_{p} / 1 \leq p \leq n\right\} \cup\left\{v_{p} / 1 \leq p \leq n\right\}$ be the vertex set of G Let $E(G)=$ $\left\{u_{p} u_{p+1} / 1 \leq p \leq n\right\} \cup\left\{v_{p} v_{p+1} 1 \leq p \leq n\right\} \cup\left\{u_{1} v_{1}\right\}$ be theedge set of G.

$$
\left[u_{n+1}=u_{1} ; v_{n+1}=v_{1}\right]
$$

Define a mapping $g: E(G) \rightarrow V_{4}-\{1\}$ such that the edge labels are
$g\left(u_{p} u_{p+1}\right)=i ; 1 \leq p \leq n g\left(v_{p} v_{p+1}\right)=i ; 1 \leq p \leq n g\left(u_{1} v_{1}\right)=i$
which induces $g^{*}: V(G) \rightarrow V_{4}$ such that
$g^{*}\left(u_{1}\right)=-i, g^{*}\left(v_{1}\right)=-i$,
$g^{*}\left(u_{p}\right)=g^{*}\left(v_{p}\right)=-1,2 \leq p \leq n$
Hence $D B_{n}$ becomes a Proximal V_{4}-magic graph as it satifies Proximal V_{4}-magic graph labeling.

Illustration 3.30

Figure 20:

Observation $3.31 G_{1}$ and G_{2} be any two Hefty V_{4}-magic graph by joining G_{1} and G_{2} by an edge the resulting graph becomes a Proximal V_{4}-magic graph.

Illustration 3.32

Figure 21:

References

[1] P. Sumathi and A. Rathi, Quotient Labeling of some Ladder graph, American Journal of Engineering Research, Vol-7, issue 12, PP 38-42.
[2] P. Sumathi, A. Rathi and A. Mahalakshmi, Quotient Labeling of corona Ladder graph, International Journal of Innovative Research in Applied sciences and Engineering, Vol.1, issue 3, Sep. 2017,80-85.
[3] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics 17, D56,2010.

