www.ijesrr.org

Volume-9, Issue-3 May-June- 2022

E-ISSN 2348-6457

P-ISSN 2349-1817

Email-editor@ijesrr.org

Proximal V₄-Magic Labeling

S.Kavitha

Research Scholar (Full Time), Register Number 19212212092007 Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India. kavithavikunth@gmail.com

V.L.Stella Arputha Mary

Assistant Professor, Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi drstellaarputha@gmail.com

Abstract

For a non-trivial Abelian group V_4 under multiplication a graph G is said to be V_4 magic graph if there exist a labeling q of the edges of G with non-zero elements of V_4 such that the vertex labeling g^* defined as $g^*(v) = \prod_{i=1}^{n} g(uv)$ taken over all edges uv incident at v is a constant.

If $g^*(v) = \prod_{i=1}^{n} g(uv)$ is constant for all vertices except for one or atmost two vertices $v \in V$, then the labeling is called Proximal V_4 -magic labeling. The graph which admits Proximal V_4 -magic labeling is called as Proximal V_4 -magic graph.

In this paper Proximal V_4 -magic labeling for some special graphsand cycle related graphs are investigated.

Keyword: U(m, n), PF(m, n), Kite graph $(n,t), [P_m; C_n], [P_m, C^{(t)}], n$ $DB_n, P_n, P_n \odot K_1, P_n \odot mK_1, K_{1,n}, B_{n,n}, PT(n, m)$ AMS subject classification (2010): 05C78

1 Introduction

Laid Foundation by Euler in the 18th century. Graph Theory grew wider by Sedlack, Kong, Lee and Sun. Sedlack introduced Magic labeling, Bloom and Golomb connected graph labeling to a wide range of applicationsuch as coding theory, communication design, Radar, circuit design, Astronomy, Network and X-ray crystallography.

For a non-trivial Abelian group V_4 under multiplication a graph G is said to be V_4 -magic graph if there exist a labeling g of the edges of G with non-zero elements of V_4 such that the vertex labeling g^* defined as $g^*(v) = \prod_{i=1}^{n} g(uv)$ taken over all edges uv incident at v is a constant.

If $g^*(v) = \prod_{u}^{n} g(uv)$ is constant for all vertices except for one or atmost two vertices $v \in V$, then the labeling is called Proximal V_4 -magic labeling. The graph which admits Proximal V_4 -magic labeling is called as Proximal V_4 -magic graph.

In this paper Proximal V_4 -magic labeling for some special graphs and cycle related graphs are investigated.

2 Preliminaries

Definition 2.1 (Bistar)

 $B_{n,n}$ is the graph obtained by joining the central (apex) vertex of twocopies of $K_{1,n}$ by an edge.

Definition 2.2 (Palm Tree)

A path of length t atached to the centre vertex of a star graph $K_{1,n}$ iscalled Palm Tree graph. It is denoted by PT(n, t). It has (n + t) edges.

Definition 2.3 (Umbrella)

The graph obtained by attaching one end vertex of a path P_m to the centre vertex of the Wheel or Cone W_n is called Umbrella graph and it denoted by U(n, m), $n \ge 3$, $m \ge 2$.

Definition 2.4 (Pedestal Fan Graph)

Let F_n be a fan and P_m be a path. The graph obtained by attaching the path to the center vertex u of the fan by an edge is called Pedestal Fan and denoted by PF (n, m).

3 Main Results

Proximal V₄-magic labeling for Special Graphs

Definition 3.1 For a non-trivial Abelian group V_4 under multiplicationa graph G is said to be V_4 -magic graph if there exist a labeling g of the edges of G with non-zero elements of V_4 such that the vertex labeling g^* defined as $g^*(v) = \prod_{u=1}^{n} g(uv)$ taken over all edges uv incident at v is a constant.

If $g^*(v) = \prod_{u} g(uv)$ is constant for all vertices except for one or atmost two vertices $v \in V$, then the labeling is called Proximal V_4 -magiclabeling.

The graph which admits Proximal V_4 -magic labeling is called

as Proximal V_4 -magic graph.

Theorem 3.2

For $n \ge 3$, P_n becomes a Proximal V_4 -magic graph

Proof.

Let G be a path graph P_n , $n \ge 3$.

Let $V(G) = \{v_p/1 \le p \le n\}$ be the vertex set of G

Let $E(G) = \{v_p v_{p+1}/1 \le p \le n-1\}$ be the edge set of G

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

 $g(v_{\rho}v_{\rho+1}) = -1; 1 \le p \le n-1$

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

which induces $g^* : V(G) \rightarrow V_4$ such that

$$g^*(v_1) = -1 g^*(v_n) = -1$$

 $g^*(v_p) = 1; 2 \le p \le n-1$

Except the first vertex and last vertex, every other vertex get the constant

1. Hence P_n becomes a Proximal V_4 -magic graph for $n \ge 3$

Illustration 3.3

Figure 1: P₉

Theorem 3.4

 $P_n \odot K_1$, the comb graph is Proximal V_4 for $n \ge 2$.

Proof.

Let G be a comb graph $P_n \odot K_{\downarrow}$, $n \ge 2$

Let $V(G) = \{v_p/1 \le p \le n\} \cup \{u_p/1 \le p \le n\}$ be the vertex set of G Let E(G) =

 $\{v_p v_{p+1}/1 \le p \le n-1\} \cup \{v_p u_p/1 \le p \le n\}$ be the edge set of G

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

 $g(v_p v_{p+1}) = -1; 1 \le p \le n-1$

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

 $g(v_p u_p) = -1; 1 \leq p \leq n$

which induces $g^* : V(G) \rightarrow V_4$ such that

 $g^*(v_1) = 1$

 $g^*(v_n) = 1$

 $g^*(v_p) = -1; 2 \le p \le n-1$

$$g^*(u_p) = -1; 1 \le p \le n$$

All the vertex except v_1 an v_n get the constant -1.

Thus the comb graph satisfies the Proximal V₄-magic graph labeling andbecomes

a Proximal V_4 -magic graph.

Illustration 3.5

Figure 2: $P_5 \odot K_1$

Theorem 3.6

 $P_n \odot mK_1$, the comb graph is Proximal V_4 -magic graph for $m \in \mathbb{N}$.

Proof.

Let G be a $P_n \odot mK_{\nu}$ $m \in N$

Let $V(G) = \{v_p/1 \le p \le n\} \cup \{u_{pq}/1 \le p \le n, 1 \le q \le m\}$ be the vertexset of G Let $E(G) = \{v_pv_{p+1}/1 \le p \le n\} \cup \{v_pu_{pq}/1 \le p \le n, 1 \le q \le m\}$ be the edge set of G Define a mapping $g : E(G) \to V_4 - \{1\}$ such that the edge labels are $g(v_pv_{p+1}) = -1; 1 \le p \le n - 1$ $g(v_pu_{pq}) = -1; 1 \le p \le n, 1 \le q \le m$ which induces $g^* : V(G) \to V_4$ such that when m is odd, $g^*(v_p) = 1$ for $p = 1, n g^*(v_p) = -1, 2 \le p \le n - 1$ $g^*(u_{pq}) = -1; 1 \le p \le n, 1 \le q \le m$ when m is even, $g^*(v_p) = -1$ for $p = 1, n g^*(v_p) = 1, 2 \le p \le n - 1$ $g^*(u_{pq}) = -1; 1 \le p \le n, 1 \le q \le m$

Thus in both cases except v_1 an v_n all other vertices get the same constantnumber either 1 or -1.

Thus G satisfies the Proximal V₄-magic graph labeling and $P_n \odot mK_1$

becomes a Proximal V_4 -magic graph.

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org E-ISSN 2348-6457 P-ISSN 2349-1817 Email- editor@ijesrr.org

Illustration 3.7

Figure 3: $P_5 \odot 5K_1$

Theorem 3.8

 $K_{1,n}$ is Proximal V_4 if and only if $n \neq 4m + 1, m \in \mathbb{N}$.

Proof.

Let $n \neq 4m + 1, m \in \mathbb{N}$.

Let G be the star graph $K_{1,n}$

Let $V(G) = \{u, v_p/1 \le p \le n\}$ be the vertex set of GLet $E(G) = \{uv_p/1 \le p \le n\}$ be the edge set of G

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

 $g(uv_p) = i; 1 \le p \le n \text{ and } n \ne 4m + 1, m \in \mathbb{N}$ which induces $g^* : V(G) \to V_4$ such that

 $g^*(v_p) = i, 1 \le p \le n$ and $g^*(u)$ gets different values other than all other vertices.

Hence G becomes a Proximal V₄-magic graph by satisfying the Proximal

 V_4 -magic graph labeling.

Conversely, let $K_{1,n}$ be a proximal V_4 -magic graph.Let $n = 4m + 1, m \in \mathbb{N}$.

By giving suitable edge labels to $K_{1,n}$, all the vertices $\{u, v_p/1 \le p \le n\}$

get the same constant.

 $K_{1,n}$ becomes a V_4 -magic graph, which is a contradiction to our assumption that $K_{1,n}$ is a proximal V_4 -magic graph. Hence $n \neq 4m + 1, m \in \mathbb{N}$. Thus $K_{1,n}$ is Proximal V_4 if and only if $n \neq 4m + 1, m \in \mathbb{N}$.

Illustration 3.9 $K_{1,5}$ (ie) $K_{1,4(1)+1}$ is not proximal V_4 .

Figure 4:

 $K_{1,10}$ is proximal V_4 -magic graph.

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

Figure 5: *K*_{1,10}

Theorem 3.10

Bistar graph $B_{n,n}$ is a Proximal V_4 -magic graph for any n.

Proof.

Let G be a Bistar graph $B_{n,n}$, $n \in N$

Let $V(G) = \{u, u_p, v, v_p/1 \le p \le n\}$ be the vertex set of GLet $E(G) = \{uv, uu_p, uu_p$

 $vv_p/1 \le p \le n$ } be the edge set of G

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

$$g(uv) = i$$

 $g(uu_p) = -1; 1 \le p \le ng(vv_p) = -1; 1 \le p \le n$

which induces $g^* : V(G) \rightarrow V_4$ such that

all the vertices except u, v get the same vertex labeling.

Thus G satisfies the Proximal V_4 -magic graph labeling. Hence Bistargraph $B_{n,n}$

is a Proximal V_4 -magic graph for all n.

Illustration 3.11

Figure 6: *B*_{9,9}

Theorem 3.12

Palm Tree *PT* (*n*, *m*) is a Proximal V_4 -magic graph for any $n, m \in \mathbb{N}$.

Proof.

Let G be PT (n, m), n, $m \in \mathbb{N}$ Let V (G) = { v_p , v, $u_p/1 \le p \le n$, $1 \le q \le m$ } be the vertex set of G Let $E(G) = {vv_p, vu_1, u_qu_{q+1}/1 \le p \le n, 2 \le q \le m - 1}$ be the edge setof G. Define a mapping $g : E(G) \to V_4 - \{1\}$ such that the edge labels are $g(vv_p) = -1; 1 \leq p \leq ng(vu_1) = i$

 $g(u_q u_{q+1}) = i; 2 \le q \le m-1$

which induces $g^* : V(G) \rightarrow V_4$ such that

when all the vertices except v and u_m get the same vertex labeling. Thus G

satisfies the Proximal V_4 -magic graph labeling. Hence Palm TreePT (n, m) is a

Proximal V_4 -magic graph for all $n, m \in N$.

Illustration 3.13

Figure 7: PT (4, 4)

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

Figure 8: *PT* (7, 9)

Proximal V₄-Magic Labeling for Cycle Related Graphs

Theorem 3.14

Umbrella graph U(m, n) is a Proximal V_4 -magic graph.

Proof.

Let G be an Umbrella graph U(m, n), for any $m, n \in \mathbb{N}$

Let $V(G) = \{u_p, v_q/1 \le p \le m, 1 \le q \le n\}$ be the vertex set of G

Let $E(G) = \{u_p u_{p+1}, v_1 u_p/1 \le p \le m-1\} \cup \{v_q v_{q+1}/1 \le q \le n-1\}$ be the edge set of G.

$$[u_{m+1}=u_1]$$

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

 $g(v_p v_{p+1}) = -1; 1 \le p \le m - 1g(u_p u_{p+1}) = i; 1 \le p \le m - 1g(v_1 u_p) = -1; 1 \le p \le m$

$$g(v_q v_{q+1}) = -1; 1 \le q \le n$$

which induces $g^* : V(G) \rightarrow V_4$ such that the vertices v_1 and v_n get the different vertex labels, when m is even. And only v_n get different label when m is odd and all the other vertices gets the same vertex labels.

Hence U(m, n) becomes a Proximal V_4 -magic graph.

Illustration 3.15 U(6, 5)

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

E-ISSN 2348-6457 P-ISSN 2349-1817 Email- editor@ijesrr.org

Figure 10: U(11, 6)

Remark 3.16

Umbrella graph U(m, n) becomes a Hefty V_4 -magic graph, when m is odd.

Theorem 3.17

Pedestal Fan graph PF(m, n) is a Proximal V_4 -magic graph for $m \ge 1$

 $3, n \geq 2.$

Proof.

Let G be Pedestal Fan graph $PF(m, n), m \ge 3, n \ge 2$.

Let $V(G) = \{u, u_p, v_q/1 \le p \le m, 1 \le q \le n\}$ be the vertex set of G

Let $E(G) = \{uu_p/1 \le p \le m\} \cup \{u_p u_{p+1}/1 \le p \le m-1\} \cup \{uv_1\} \cup$

 $\{v_q v_{q+1}/1 \le q \le n\}$ be the edge set of G

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

$$g(uu_1) = g(uu_m)) = -i g(uu_p) = -1; 2 \le p \le m - 1 g(u_p u_{p+1}) = i; 1 \le p \le m - 1$$
$$g(v_q v_{q+1}) = -1; 1 \le q \le n - 1 g(uv_1) = -1$$

which induces $q^* : V(G) \rightarrow V_4$ such that

When m is odd, only one vertex v_m get the different label and all othervertices have the same labels.

When m is even, two vertices u, v_m get different vertex label and all the

other vertices get the constant vertex label.

Thus Pedestal Fan PF(m, n) satisfies Proximal V₄-magic graph labelingand

becomes a Proximal V₄-magic graph for $m \ge 3$, $n \ge 2$.

Illustration 3.18

Figure 11: *PF* (5, 6)

Figure 12: *PF* (6, 5)

Theorem 3.19

Kite graph (n, t) is a Proximal V_4 -magic graph for $n \ge 3$ and $t \ge 1$.

Proof.

Let G be Kite graph $(n, t), n \ge 3$ and $t \ge 1$. Let $V(G) = \{v_p/1 \le p \le 1\}$

n \cup { $u_q/1 \le q \le t$ } be the vertex set of G

Let $E(G) = \{v_p v_{p+1}/1 \le p \le n\} \cup \{v_1 u_1\} \cup \{u_q u_{q+1}/1 \le q \le t - 1\}$ be the edge set of G

 $[\boldsymbol{v}_{n+1} = \boldsymbol{v}_1]$

Define a mapping $g : E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are $g(vv_p) = -1; 1 \le p \le ng(v_1u_1) = -1$ $g(u_qu_{q+1}) = -1; 1 \le q \le t$ which induces $g^* : V(G) \rightarrow V_4$ such that except v_1 and u_t , all the other vertices get the same constant 1. Thus Kite graph (n, t) becomes Proximal graph by satisfying the condition of Proximal V_4 -magic graph labeling.

Illustration 3.20 (7, 5)

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org E-ISSN 2348-6457 P-ISSN 2349-1817 Email- editor@ijesrr.org

Figure 13:

Illustration 3.21 (10, 6)

Figure 14:

Observation 3.22

Whether G is a Hefty V_4 -magic graph or V_4 -magic graph, $G \odot P_n$ is aProximal V_4 -magic graph.

Theorem 3.23

 $[P_m; C_n]$ graph is a Proximal V_4 -magic graph for any $m \ge 2, n \ge 3$.

Proof.

Let G be a $[P_m; C_n]$ graph, $m \ge 2, n \ge 3$ Let $V(G) = \{v_{pq}/1 \le p \le 1\}$

 $m, 1 \le q \le n$ } be the vertex set of G

Let $E(G) = \{v_{pq}v_{p+1,q}/1 \le p \le m-1, q = 1\} \cup \{v_{pq}v_{pq+1}/1 \le p \le m, 1 \le m\}$

 $q \leq n$ } be the edge set of G.

$$[v_{pn+1} = v_{p1}]$$

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

 $g(v_{pq}v_{p+1,q}) = -1; 1 \le p \le m-1 \text{ and } q = 1$

 $g(v_{pq}v_{pq+1}) = i, 1 \leq p \leq m \text{ and } 1 \leq q \leq n$

which induces $g^* : V(G) \rightarrow V_4$ such that except v_{11} and v_{m1} all the other vertices get the same constant -1.

Thus $[P_m; C_n]$ graph becomes a Proximal V_4 -magic graph by satisfying the condition of Proximal V_4 -magic graph labeling.

Illustration 3.24 $[P_3; C_4]$

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org E-ISSN 2348-6457 P-ISSN 2349-1817

Figure 15: [*P*₃; *C*₄]

Illustration 3.25 $[P_4; C_5]$

Figure 16: [*P*₄; *C*₅]

Theorem 3.26

 $[P_n; C_m^{(t)}]$ is a Proximal V_4 -magic graph for $n \ge 2, m \ge 3$ and $t \ge 1$.

Proof.

Let G be a $[P_n; C^{(t)}]$ graph_n $n \ge 2, m \ge 3$ and $t \ge 1$.

Let *n* be odd or even

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org Case 1 Let both m and t be odd E-ISSN 2348-6457 P-ISSN 2349-1817 Email- editor@ijesrr.org www.ijesrr.org

Let
$$V(G) = \{u_p/1 \le p \le n\} \cup \{v^{(t)}/1 \le p_p \le n, 1 \le q \le m-1 \text{ and } t \ge 1\}$$

be the vertex set of G

Let
$$E(G) = \{u \ u_p \ p+1 \ l \le p \le n-1\} \cup \{v_p^{(t)}, v_p^{(t)}, \frac{1}{pq+1} \ l \le p \le n; 1 \le q \le m-2; t \ge 1\} \cup \{u_p v^{(t)} / 1 \le p \le n, t \ge 1\} \cup \{u_p v^{(t)} \ p \le n, t \ge 1\}$$

be the edge set of G. Define a mapping $g : E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

$$\begin{split} g(u_{p}u_{p+1}) &= -1; 1 \leq p \leq n-1 \\ g(u_{p}v^{(t)}) &= i, 1_{p} \leq p \leq n, t \geq 1 \\ & \stackrel{(t)}{\underset{p(m}{}^{(t)}} \underbrace{g(u)}_{pq} v = i, 1 \leq p \leq n, t \geq 1 \\ g(v_{pq}^{(t)}v_{pq+1}^{(t)}) &= -i, 1 \leq p \leq n, 1 \leq q \leq m-2, q \text{ is odd, } t \geq 1 \\ g(v_{pq}^{(t)}v_{pq+1}^{(t)}) &= -i, 1 \leq p \leq n, 1 \leq q \leq m-2, q \text{ is even, } t \geq 1 \end{split}$$

which induces $g^* : V(G) \rightarrow V_4$ such that

 $g^*(u_1) = 1$ and $g^*(u_n) = 1$ And all the other vertices

 $g^*(u_p) = -1$, $2 \le p \le n - 1$ Hence G becomes a Proximal

*V*₄-magic graph.

Case 2 Let both m and t be even.

Let
$$V(G) = \{u_p/1 \le p \le n\} \cup \{v^{(t)}/1 \le p_p \le n, 1 \le q \le m-1 \text{ and } t \ge 1\}$$

be the vertex set of G

Let
$$E(G) = \{ u \mid u \atop p \neq 1 \leq p \leq n-1 \} \cup \{ v^{(t)} v^{(t)} \not 1 \leq p \leq n; 1 \leq q \leq n \}$$

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

$$m-2; t \ge 1 \} \cup \{u_p v^{(t)}/1 \le p \le n, t \ge 1 \} \cup \{u_p v^{(t)} \ /1 \le p \le n, t \ge 1 \}$$

be the edge set of G.

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

$$\begin{split} g(u_{p}u_{p+1}) &= -1; 1 \leq p \leq n-1 \\ g(u_{p}v^{(t)}) &= i, 1_{p} \leq p \leq n, t \geq 1 \\ & \stackrel{(t)}{\underset{p(m)}{(m}} g(\underbrace{\mu}) v = -i, 1 \leq p \leq n, t \geq 1 \\ g(v_{pq}^{(t)}v_{pq+1}^{(t)}) &= -i, 1 \leq p \leq n, 1 \leq q \leq m-2, q \text{ is odd, } t \geq 1 \\ g(v_{pq}^{(t)}v_{pq+1}^{(t)}) &= i, 1 \leq p \leq n, 1 \leq q \leq m-2, q \text{ is even, } t \geq 1 \end{split}$$

which induces $g^*: V(G) \rightarrow V_4$ such that

 $g^*(u_1) = -1$ and $g^*(u_n) = -1$ And all the other vertices

 $g^*(u_p)$ = 1, 2 $\leq p \leq n - 1$ Hence G becomes a Proximal V_4 -

magic graph.

Case 3 Let m be odd and t be even.

Let
$$V(G) = \{u_p/1 \le p \le n\} \cup \{v^{(t)}/1 \le p_{p \not \in} n, 1 \le q \le m-1 \text{ and } t \ge 1\}$$

be the vertex set of G

Let
$$E(G) = \{u \ u_p \ p+1 \ l \le p \le n-1\} \cup \{v_p^{(t)} v_p^{(t)} \ l \le p \le n; 1 \le q \le m-2; t \ge 1\} \cup \{u_p v^{(t)} \ l \le p \le n, t \ge 1\} \cup \{u_p v^{(t)} \ l \le p \le n, t \ge 1\}$$

be the edge set of G.

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

$$\begin{split} g(u_{p}u_{p+1}) &= -1; 1 \leq p \leq n-1 \\ g(u_{p}v^{(t)}) &= i, 1_{p} \leq p \leq n, t \geq 1 \\ & \stackrel{(t)}{\underset{p(m)}{}} (\underbrace{u_{p}}_{1}) \bigvee = i, 1 \leq p \leq n, t \geq 1 \\ g(v_{pq}^{(t)}v_{pq+1}^{(t)}) &= -i, 1 \leq p \leq n, 2 \leq q \leq m-2, q \text{ is odd, } t \geq 1 \\ g(v_{pq}^{(t)}v_{pq+1}^{(t)}) &= i, 1 \leq p \leq n, 2 \leq q \leq m-2, q \text{ is even, } t \geq 1 \end{split}$$

which induces $g^* : V(G) \rightarrow V_4$ such that

 $g^*(u_1) = -1$ and $g^*(u_n) = -1$ And all the other vertices

 $g^*(u_p)$ = 1, 2 $\leq p \leq n - 1$ Hence G becomes a Proximal V_4 -

magic graph.

Case 4 Let m be even and t be odd

Let $V(G) = \{u_p/1 \le p \le n\} \cup \{v^{(t)}/1 \le p_{p \notin} n, 1 \le q \le m-1 \text{ and } t \ge 1\}$ be the vertex set of G Let $E(G) = \{u \mid u_p/1 \le p \le n-1\} \cup \{v^{(t)}_{pq}v^{(t)}/1 \le p \le n, 1 \le q \le m-2, t \ge 1\} \cup \{u_pv^{(t)}/1 \le p \le n, t \ge 1\} \cup \{u_pv^{(t)}/1 \le p \le n, t \ge 1\}$ be the edge set of G. Define a mapping $q : E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

 $egin{aligned} g(u_{p}u_{p+1}) &= -1; 1 \leq p \leq n-1 \ g(u_{p}v^{(t)}) &= i, 1_{p} \leq p \leq n, t \geq 1 \ & \stackrel{(t)}{p(m} g(\mu) &= -i, 1 \leq p \leq n, t \geq 1 \end{aligned}$

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

$$g(v_{pq}^{(t)}v_{pq+1}^{(t)}) = -i, 1 \le p \le n, 2 \le q \le m-2, q \text{ is odd}, t \ge 1$$

 $g(v_{pq}^{(t)}v_{pq+1}^{(t)})$ = 1, $1 \le p \le n, 2 \le q \le m-2, q$ is even, $t \ge 1$

which induces $g^* : V(G) \rightarrow V_4$ such that

 $g^*(u_1) = -1$ and $g^*(u_n) = -1$ And all the other vertices

 $g^*(u_p) = 1, 2 \le p \le n-1$

Hence G becomes a Proximal V₄-magic graph.

Thus from all the four cases $[P_n; C_m^{(t)}]$ is a Proximal V_4 -magic graph is

proved

Illustration 3.27

Figure 17: [*P*₃; *C*⁽²⁾]

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org E-ISSN 2348-6457 P-ISSN 2349-1817 Email- editor@ijesrr.org

Figure 18: $[P_{\bar{\Phi}}; C^{(2)}]$

Figure 19: [*P*_≸; *C*⁽³⁾]

Remark 3.28

If all the edges of $[P_n; C^{(t)}]$ are labelled with -1, then again $[P_n; C^{(t)}]$

т

becomes a Proximal V_4 -magic graph.

Theorem 3.29

Dumbell graph DB_n is a Proximal V_4 -magic graph for $n \ge 3$.

Proof.

Let G be a Dumbell DB_n , $n \ge 3$

Let $V(G) = \{u_p/1 \le p \le n\} \cup \{v_p/1 \le p \le n\}$ be the vertex set of G Let E(G) =

 $\{u_p u_{p+1}/1 \le p \le n\} \cup \{v_p v_{p+1}, 1 \le p \le n\} \cup \{u_1 v_1\}$ be the edge set of G.

$$[u_{n+1} = u_1; v_{n+1} = v_1]$$

Define a mapping $g: E(G) \rightarrow V_4 - \{1\}$ such that the edge labels are

$$g(u_p u_{p+1}) = i; 1 \le p \le n g(v_p v_{p+1}) = i; 1 \le p \le n g(u_1 v_1) = i$$

which induces $g^* : V(G) \rightarrow V_4$ such that

 $g^*(u_1) = -i, g^*(v_1) = -i,$

 $g^*(u_p) = g^*(v_p) = -1, 2 \le p \le n$

Hence DB_n becomes a Proximal V_4 -magic graph as it satifies Proximal

 V_4 -magic graph labeling.

Volume-9, Issue-3 May-June- 2022 www.ijesrr.org

E-ISSN 2348-6457 P-ISSN 2349-1817 Email- editor@ijesrr.org

Illustration 3.30

Figure 20:

Observation 3.31 G_1 and G_2 be any two Hefty V_4 -magic graph by joining G_1 and G_2 by an edge the resulting graph becomes a Proximal V_4 -magic graph.

Illustration 3.32

Figure 21:

References

- [1] P. Sumathi and A. Rathi, *Quotient Labeling of some Ladder graph*, American Journal of Engineering Research, Vol-7, issue 12, PP 38-42.
- [2] P. Sumathi, A. Rathi and A. Mahalakshmi, Quotient Labeling of corona Ladder graph, International Journal of Innovative Research in Applied sciences and Engineering, Vol.1, issue 3, Sep. 2017,80-85.
- [3] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics 17, D56,2010.